
10101001111101100000100010

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 A B C D E F

0001 0010 0011 0100 0101 0110 0111 1000 1001 1100 1011 1100 1101 1110 1111

 x 0 2 A 7 D 8 2 2

Instruction:

0000 0010 1010 0111 1101 1000 0010 0010

00000010101001111101100000100010

{ { { { { { { {

{
 First: Figure out the OpCode wich is the front most 6 bits.
 This will tell you what type of instruction this is:

"000000" = R-Type, anything else = I-Type (Refer MIPS)

This OPCode
 equals "000000"

This is R-Type

6 bits
OPCode

5 bits 5 bits 5 bits 6 bits5 bits

As 8 Hex digits

As 32 bit String

As 8 words, each 4
bits

Src Src 2 Dst Shamt Funct
Source for first Register: Src

Source for second Register: Src 2
The Destinatino Register: Dst

We'll just deal with "00000": Shamt
The type of function to perform: Funct

Decimal Decimal Decimal "00000" Hex

x22 = Sub (Refer MIPS)0$2$7$21

{ { { { {

Sub $27, $21, $7

0 0 0 0 0 0 0 0 0 0

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
n...

Four Bits = 1 (4 bit) Word =

{{{ {{

Lw $13, 4 ($17)

10001101101010000000000000000100

100011 01101 0100 00101

{ { {

I-Type Assembly Instruction:

Break down each component into bits:

6 bits
OpCode

5 bits
Src

5 bits
Dst

16 bits
Offset / Immediate

Combine together as a 32 bit String

Instruction:

As 8 Hex digits

H
ex

 a
nd

D

ec
im

al
:

A
s

4
bi

ts

Separate by counting four bits at a time, starting
right and going left

Put it all together and we get the Hex Instruction

Lookup instruction OpCode in Mips Sheet

"4" is the Offset, but needs to be extended 12 bits
to the left in order to make it 16 bits. Extend with

0's for positive number, 1's for negative

Each instruction is fetched as an 8 Hex word
which is then converted to its four bit
representation and strung together

First 6 bits determine OpCode. If = 0, R-type, else
I-type

By conversting each substring of bits we get the
register or function described. (Look up the hex

function code in the Green MIPS sheet)

Put it all together and we get the Assembly Instruction

 If binary = 1 the 2 exponential x is true.
Calculate exponentials and add them together so

as to get the Decimal Number it represents.
Any number can be made with a string of binaries.

Convert Register number to the correct binary String

Double digit numbers get conversted to letters so as to distinguish them from two
single digits next to each other

(Look up OpCode for the operation in the MIPS
Sheet)

 1 1 0 1

 k 256 128 64 32 16 8 4 2 1

0 0 0 0 0 1 1 1 0 1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
n...

 k 256 128 64 32 16 8 4 2 1

= 29 Decimal / Hex n/a

= 16 + 8 + 4 +1 = 29

= 7 Decimal / 7 in Hex

Example

 1 bit = 0 || 1 A bit is a binary unit which can be either 1 or 0

 0 = False
1 = True

]]

 0 0 0 0 0 0 0

]]]]]

We can make numbers with a sequence of
these. The first zero corresponds to the product

of two raised to the zero. The second
represents 2 raised to the first. The third 2

raised to the second, and so on...

]]]]]]]]]]

R
-T

yp
e

In
st

ru
ct

io
n

I -
Ty

pe

In
st

ru
ct

io
n

F
ig

ur
e

ou
t O

pC
od

e

U
se

 T
em

pl
ae

 to

B
re

ak
 D

ow
n

in
st

ru
ct

io
n

R
ep

re
se

nt
in

g
N

um
be

rs
 in

B

in
ar

y

B
in

ar
y

to
 A

ss
em

bl
y

In

st
ru

ct
io

n
P

ro
ce

ss

]

 Consider to be a container. It can hold one binary bit. This
Binary bit can be either 0 || 1 * || means "or"

]

]]

A bit can also represent True || False

Each Hex char or decimal can be described by
four bits.

T
he

 B
it

40008AD8x

0000

{ {

Sub =
Control Points

